Fast Discriminative Visual Codebooks using Randomized Clustering Forests

Fredéric Jurie, CNRS - INRIA. Joint work with F. Moosmann and B. Triggs

To appear in NIPS'06

Fredéric Jurie, CNRS - INRIA. Joint work with F. Moosmann and B. Triggs Fast Discriminative Visual Codebooks using Randomized Clustering Forests

Introduction

Scene categorization

Object Class categorization

Fredéric Jurie, CNRS - INRIA. Joint work with F. Moosmann and B. Triggs Fast Discriminative Visual Codebooks using Randomized Clustering Forests

Introduction

Tree Structured Visual Dictionaries Extremely Randomized Clustering Forests Experiments Conclusions

- Challenges:
 - Classes defines by pure 2D-Images
 - High Inner-Class Variance
 - Low Intra-Class Distance
 - Need for robustness towards transformations / illumination changes
 - Large number of images

Introduction

Tree Structured Visual Dictionaries Extremely Randomized Clustering Forests Experiments Conclusions

(人間) シスヨン スヨン

э

Visual Dictionaries

• Visual Dictionary = any process (labels → descriptors)

∃ >

- Creating visual codebooks
 - \rightarrow various methods, \rightarrow influence on performance.
- K-means clustering: currently the most common [Csurka *et al.*, ECCV-WSLCV, 2004], [Sivic *et al.*, ICCV'03]
- Mean-shift [Jurie *et al.*, ICCV'05] clusterers \rightarrow advantages.
- Common properties
 - Unsupervised (i.e. class labels are not used in the clustering process)
 - $\bullet\,$ Complexity: at least $\sim\,$ number of dimensions of the feature space.

How to be faster: using kd-trees

∃ → < ∃</p>

Kd-trees drawbacks: instability

Adding robustness: ensemble of kd-trees

Alternate solutions: [Nister, CVPR'06]: tree coding (hierarchical K-means), uses all components; compromise between speed and loss of accuracy.

- Supervised / Adapted vocabularies
 - [Perronnin *et al.*, ECCV'06]: universal vocabulary adapted for each class.
 - [Winn *et al.*, ICCV'05], large vocabulary \rightarrow optimal words (mergin GMM).
- Impressive results computationally expensive (cost of assignation)
- How to be faster?
 - Tree based coding [Nister, CVPR'06] [Lepetit05 *et al.*, CVPR'05] faster but less discriminant.
 - How to achieve both Speed and Good Discrimination?

Decision Trees

Decision trees for classifing images.

 \rightarrow instable.

Fredéric Jurie, CNRS - INRIA. Joint work with F. Moosmann and B. Triggs Fast Discriminative Visual Codebooks using Randomized Clustering Forests

< 17 ▶

< ∃ >

-

3

Decision Trees

Ensemble of randomized decision trees.[Geurts et al., ML 2006]

 \rightarrow Good results, but not as good as 'bag-of-words' approaches.

- B

Decision Trees as clustering trees

Decision Tree Ensemble

-

Decision Trees as clustering trees

Fredéric Jurie, CNRS - INRIA. Joint work with F. Moosmann and B. Triggs Fast Discriminative Visual Codebooks using Randomized Clustering Forests

- B

Main contributions

Contributions:

- Small ensembles of decision trees:
 - eliminate many of the disadvantages of single tree based coders
 - without losing the speed advantages of trees.
- Decision trees: valuable information about locality in descriptor space (≠ class labels).
- Training tree for classification; ignore class labels;
 - clustering trees
 - simple spatial partitioners that assign a distinct label (visual word) to each leaf.
- We show that:
 - Good resistance to background clutter
 - Much faster: for training and testing,
 - More accurate results (than conventional methods like k-means)

Overall framework

Using ERC-Forests as visual codebooks in bag-of-feature image classification.

Extremely Randomized Clustering Forests (ERC-Forests)

- $\mathbf{d} = (f_1, \dots, f_D)$, where $f_i, i = 1, \dots, D$ are elementary scalar features.
- y is the same for all descriptors from a given image.
- training: using a labeled (for now) training set $L = \{(\mathbf{d}_n, y_n), n = 1, \dots, N\}.$
- Leaves labels: unique leaf indices, not the descriptor labels y associated with the leaves.

Building ERC-Trees.

- Trees construction: recursively top down.
- Each node t
 - descriptor space region \mathcal{R}_t ,
 - two children I, r = boolean test \mathcal{T}_t
 - $\mathcal{R}_t = \mathcal{R}_I \cup \mathcal{R}_r$ with $\mathcal{R}_I \cap \mathcal{R}_r = \phi$.
- Recursion until further subdivision is impossible.
- Thresholds on elementary features $\mathcal{T}_t = \{f_{i(t)} \leq \theta_t\}$
 - Index i(t) is chosen randomly
 - Threshold θ_t is sampled randomly from a uniform distribution
 - resulting node is scored (Shannon entropy)
 - High scores indicate that the split separates the classes well.
- Procedure repeated (threshold $S_{\min},$ maximum number \mathcal{T}_{\max} of trials).
- T_t with highest score adopted
- Pruning

.

Computational complexity.

- Worst-case complexity for building trees: is $O(T_{\max}Nk)$
- Cannot guarantee balanced trees, but in our experiments on real data we always obtained well balanced trees.
- Practical obseved complexity of around $O(T_{\max}N \log k)$.
- Dependence on data dimensionality:
 - *D*: hidden in the constant T_{\max} 'filter out irrelevant feature dimensions), better coding, more balanced trees.
 - $T_{\max} \sim O(\sqrt{D})$ has been suggested [Geurts et al., ML 2006], leading to a total complexity of $O(\sqrt{DN} \log k)$.
 - k-means complexity: O(DNk) −10⁴× more for our 768-D wavelet descriptor with N = 20000 data points and k = 5000 clusters (not counting the number of iterations that k-means has to perform.)

くぼう くまり くまり

• Faster in use: $O(\log k)$ (k-means costs O(kD))

Experiment Settings

- Visual descriptors.
 - Color descriptor: raw HSL color pixels 768-D feature vector (16×16 pixels × 3 colors).
 - $\bullet\,$ Color wavelet descriptor: 768-D vector using a 16 $\times 16$ Haar wavelet transform.
 - Grayscale SIFT descriptor [Lowe, IJCV'04][Marszalek, CVPR'06]: returns 128-D vectors (4×4 histograms of 8 orientations).
- ROC curves classification rates at EER.
- means and variances, 10 learning runs.
- We use $S_{\min} = 0.5$. The exact value is not critical.
- $T_{\rm max}$: a significant influence, validation set. For the 768-D Color Wavelet: $\rightarrow T_{\rm max} \approx 50$.

Databases

- 4 different databases. GRAZ-02 test set.
- Bicycles (B), cars (C), persons (P) and negatives (N).
- Illumination: is highly variable
- Objects: different perspectives and scales, occluded.
- Background: neutral (weak influence of context).

Comparing our random forest with k-mean and kd-clustering trees.

- Individual object categories versus negatives (N).
- 300 images from each category
- Two settings:
 - Setting 1 did not use the (available) segmentation masks ([Opelt et al., SCIA'05])
 - Setting 2 uses the provided masks

Comparing our random forest with k-mean and kd-clustering trees.

- B vs. N we achieve:
 - 84.4% average EER classification rate for setting 1
 - 84.1% for setting 2,
 - in comparison to 76.5% from [Opelt et al., SCIA'05].
- For C vs. N the respective figures are
 - 79.9% setting 1,
 - 79.8% setting 2
 - in comparison to 70.7% from [Opelt et al., SCIA'05].
- Segmentation masks: not improving results

Comparing our random forest with k-mean and kd-clustering trees.

Visual codebook

Test patches that were assigned to a particular 'car' leaf (left) and a particular 'bike' one (right).

Conclusions

- Bag-of-words: state-of-the art results, but
 - quantization large numbers of high-dimensional descriptors
 - cluster quality
- Decision trees used as descriptor-space partitions
- *Extremely Randomized Clustering Forests*: rapid, highly discriminative, out-performs k-means based coding
 - training time
 - memory
 - testing time
 - classification accuracy.
- Promising approach for visual recognition, may be beneficial to other areas such as object detection and segmentation.
- Resistant to background clutter: clean segmentation and "pop-out" of foreground classes

Perspective: Biased Sampling

Perspective: Biased Sampling

Fredéric Jurie, CNRS - INRIA. Joint work with F. Moosmann and B. Triggs Fast Discriminative Visual Codebooks using Randomized Clustering Forests

< ∃ >

6